• NeuroImage · May 2002

    Investigating cervical spinal cord structure using axial diffusion tensor imaging.

    • Claudia A M Wheeler-Kingshott, Simon J Hickman, Geoffrey J M Parker, Olga Ciccarelli, Mark R Symms, David H Miller, and Gareth J Barker.
    • NMR Research Unit, University Department of Clinical Neurology, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, United Kingdom.
    • Neuroimage. 2002 May 1; 16 (1): 93-102.

    AbstractThis study describes a new technique for Diffusion Tensor Imaging (DTI) that acquires axial (transverse) images of the cervical spinal cord. The DTI images depict axonal fiber orientation, enable quantification of diffusion characteristics along the spinal cord, and have the potential to demonstrate the connectivity of cord white matter tracts. Because of the high sensitivity to motion of diffusion-weighted magnetic resonance imaging and the small size of the spinal cord, a fast imaging method with high in-plane resolution was developed. Images were acquired with a single-shot EPI technique, named ZOOM-EPI (zonally magnified oblique multislice echo planar imaging), which selects localized areas and reduces artefacts caused by susceptibility changes between soft tissue and the adjacent vertebrae. Cardiac gating was used to reduce pulsatile flow artefacts from the surrounding cerebrospinal fluid. Voxel resolution was 1.25 x 1.25 mm(2) in-plane with 5-mm slice thickness. Both the mean diffusivity (MD) and the fractional anisotropy (FA) indices of the cervical spinal cord were measured. The FA index demonstrated high anisotropy of the spinal cord with an average value of 0.61 +/- 0.05 (highest value of 0.66 +/- 0.03 at C3), comparable to white matter tracts in the brain. The diffusivity components parallel and orthogonal to the longitudinal axes of the cord were lambda( parallel) = (1648 +/- 123) x 10(-6) mm(2)s(-1) and lambda( perpendicular) = (570 +/- 47) x 10(-6) mm(2) s(-1), respectively. The high axial resolution allowed preliminary evaluation of fiber connectivity using the fast-marching tractography algorithm, which generated traces of fiber paths consistent with the well-known cord anatomy.2002 Elsevier Science (USA).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.