NeuroImage
-
Clinical Trial
Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls.
Changes in regional cerebral blood flow (rCBF) have previously been demonstrated in a number of cortical and subcortical regions, including the cerebellum, midbrain, thalamus, lentiform nucleus, and the insula, prefrontal, anterior cingulate, and parietal cortices, in response to experimental noxious stimuli. Increased anterior cingulate responses in patients with chronic regional pain and depression to noxious stimulation distant from the site of clinical pain have been observed. We suggested that this may represent a generalized hyperattentional response to noxious stimuli and may apply to other types of chronic regional pain. ⋯ Correlation of rCBF with subjective pain experience revealed similar responses across groups in the cerebellum, midbrain (including the PAG), thalamus, insula, lentiform nucleus, and midcingulate (area 24') cortex. These regions represented the majority of activations for this study and those recorded by other imaging studies of pain. Although some small differences were observed between the groups these were not considered sufficient to suggest abnormal nociceptive processing in patients with nonspecific low back pain.
-
A well-recognized problem with the echo-planar imaging (EPI) technique most commonly used for functional magnetic resonance imaging (fMRI) studies is geometric distortion caused by magnetic field inhomogeneity. This makes it difficult to achieve an accurate registration between a functional activation map calculated from an EPI time series and an undistorted, high resolution anatomical image. A correction method based on mapping the spatial distribution of field inhomogeneities can be used to reduce these distortions. ⋯ We propose that field maps with acceptable noise levels can be generated easily using a dual echo-time EPI sequence and demonstrate the importance of distortion correction for anatomical coregistration, even for small distortions. Using a dual echo-time series to generate a unique field map at each time point, we characterize the interaction between head motion and geometric distortion. However, we suggest that the variance between successively measured field maps introduces additional unwanted variance in the voxel time-series and is therefore not adequate to correct for time-varying distortions.
-
This study describes a new technique for Diffusion Tensor Imaging (DTI) that acquires axial (transverse) images of the cervical spinal cord. The DTI images depict axonal fiber orientation, enable quantification of diffusion characteristics along the spinal cord, and have the potential to demonstrate the connectivity of cord white matter tracts. Because of the high sensitivity to motion of diffusion-weighted magnetic resonance imaging and the small size of the spinal cord, a fast imaging method with high in-plane resolution was developed. ⋯ The FA index demonstrated high anisotropy of the spinal cord with an average value of 0.61 +/- 0.05 (highest value of 0.66 +/- 0.03 at C3), comparable to white matter tracts in the brain. The diffusivity components parallel and orthogonal to the longitudinal axes of the cord were lambda( parallel) = (1648 +/- 123) x 10(-6) mm(2)s(-1) and lambda( perpendicular) = (570 +/- 47) x 10(-6) mm(2) s(-1), respectively. The high axial resolution allowed preliminary evaluation of fiber connectivity using the fast-marching tractography algorithm, which generated traces of fiber paths consistent with the well-known cord anatomy.
-
The self-diffusion tensor may be calculated from several echo-planar image acquisitions preceded by different diffusion gradients. Unfortunately, these diffusion gradients cause geometric distortion that must be corrected before estimation of the tensor. In the present paper we suggest and implement a method for retrospective correction of these distortions firmly based on a physical model for the diffusion-weighted images. ⋯ We show how this notion can be formalized as a quadratic form thereby facilitating the implementation of a rapid algorithm. In addition, we suggest models for how distortions vary with slice position and gradient direction that allow us to substantially reduce the dimensionality of the parameter space. Our results indicate that we are able to estimate both eddy current-induced distortion and subject movement directly from the data without need of any additional measurements.