• Comput. Biol. Med. · Jul 2020

    Bioinformatics studies on a function of the SARS-CoV-2 spike glycoprotein as the binding of host sialic acid glycans.

    • B Robson.
    • Ingine Inc. Cleveland Ohio USA and the Dirac Foundation, Oxfordshire, UK. Electronic address: barryrobson@ingine.com.
    • Comput. Biol. Med. 2020 Jul 1; 122: 103849.

    AbstractSARS-CoV and SARS-CoV-2 do not appear to have functions of a hemagglutinin and neuraminidase. This is a mystery, because sugar binding activities appear essential to many other viruses including influenza and even most other coronaviruses in order to bind to and escape from the glycans (sugars, oligosaccharides or polysaccharides) characteristic of cell surfaces and saliva and mucin. The S1 N terminal Domains (S1-NTD) of the spike protein, largely responsible for the bulk of the characteristic knobs at the end of the spikes of SARS-CoV and SARS-CoV-2, are here predicted to be "hiding" sites for recognizing and binding glycans containing sialic acid. This may be important for infection and the ability of the virus to locate ACE2 as its known main host cell surface receptor, and if so it becomes a pharmaceutical target. It might even open up the possibility of an alternative receptor to ACE2. The prediction method developed, which uses amino acid residue sequence alone to predict domains or proteins that bind to sialic acids, is naïve, and will be advanced in future work. Nonetheless, it was surprising that such a very simple approach was so useful, and it can easily be reproduced in a very few lines of computer program to help make quick comparisons between SARS-CoV-2 sequences and to consider the effects of viral mutations.Copyright © 2020 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…