• Methods Mol. Biol. · Jan 2016

    Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo.

    • Shalini Dimri, Soumya Basu, and Abhijit De.
    • Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.
    • Methods Mol. Biol. 2016 Jan 1; 1443: 57-78.

    AbstractApplication of bioluminescence resonance energy transfer (BRET) assay has been of special value in measuring dynamic events such as protein-protein interactions (PPIs) in vitro or in vivo. It was only in the late 1990s the BRET assay using RLuc-YFP was introduced for biological research showing its use in determining interaction of two proteins involved in circadian rhythm. Several inherent attributes such as rapid and fairly sensitive ratiometric measurements, assessment of PPI irrespective of protein location in cellular compartment, and cost-effectiveness consenting to high-throughput assay development make BRET a popular genetic reporter-based assay for PPI studies. In BRET-based screening, within a defined proximity range of 10-100 Å, excited state energy of the luminescence molecule can excite the acceptor fluorophore in the form of resonance energy transfer, causing it to emit at its characteristic emission wavelength. Based on this principle, several such donor-acceptor pairs, using the Renilla luciferase or its mutants as donor and either GFP2, YFP, mOrange, TagRFP, or TurboFP as acceptor, have been reported for use.In recent years, BRET-related research has become significantly versatile in the assay format and its applicability by adopting the assay on multiple detection devices such as small-animal optical imaging platform or bioluminescence microscope. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular optical imaging applications based on BRET assays have broadened its scope for screening of pharmacological compounds by unifying in vitro, live cell, and in vivo animal/plant measurement all on one platform. Taking examples from the literature, this chapter contributes to in-depth methodological details on how to perform in vitro and in vivo BRET experiments, and illustrates its advantages as a single-format assay.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…