• Strahlenther Onkol · Feb 2005

    Comparative Study Clinical Trial Controlled Clinical Trial

    Evaluation of HDR interstitial breast implants planned by conventional and optimized CT-based dosimetry systems with respect to dose homogeneity and conformality.

    • Tibor Major, János Fodor, Zoltán Takácsi-Nagy, Péter Agoston, and Csaba Polgár.
    • Radiotherapy Department, National Institute of Oncology, 7-9. Rath Gy. u., 1122 Budapest, Hungary. major@oncol.hu
    • Strahlenther Onkol. 2005 Feb 1; 181 (2): 89-96.

    Background And PurposeRecently, the use of brachytherapy for partial breast irradiation has increased significantly. The aim of this study was to make dosimetric comparisons between conventional (CONV) and CT-based optimized dosimetry systems applied to breast implants.Patients And Methods17 patients treated with high-dose-rate (HDR) interstitial brachytherapy were selected for the study. Two patients had two-plane and 15 three-plane implants. Treatment planning was based on conventional two isocentric radiographs and dose point optimization (CONV). For each patient postimplant CT scans were taken, and the target volume (lumpectomy cavity with 1 cm margin) was outlined in all axial slices. The treatment planning was repeated using CT images. The dose distributions were analyzed by dose-volume histograms. To quantify the dose distributions, volume (V90, V100, V150, V200) and dose (D90, D(min), mean central dose [MCD]) parameters, along with the dose nonuniformity ratio (DNR), dose homogeneity index (DHI), external volume index (EI) and conformal index (COIN) were used. For each implant, three more virtual treatment plans were created using the Paris dosimetry system (PDS), geometrically optimized system (GOS) and conformal system (CONF). Dose and volume parameters were calculated and compared.ResultsThe median number of catheters amounted to ten (range: 6 to 13) and the average volume of planning target volume to 63.4 cm(3) (range: 17.7-122 cm(3)). The mean target coverage was 70%, 61%, 57% and 87%; the D90 72%, 64%, 60% and 94%; the DNR 0.35, 0.25, 0.25 and 0.55; the EI 0.62, 0.54, 0.08 and 0.15; the COIN 0.40, 0.34, 0.50 and 0.74 for the CONV, PDS, GOS and CONF systems, respectively.ConclusionWith CT-based optimized dose planning the target coverage can be significantly increased compared to the conventional dosimetry systems, but the target dose distribution will be more inhomogeneous. To improve the quality of brachytherapy implants, the image-based three-dimensional information should be used not only for dose plan evaluation, but also previously, for planning the geometry of the catheter positions and performing the insertions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…