Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]
-
To examine the equivalent uniform dose (EUD) formalism using the universal survival curve (USC) applicable to high-dose stereotactic body radiotherapy (SBRT). ⋯ A uniform formalism of EUD should be defined among the SBRT community in order to apply it as a single metric for dose reporting and dose-response modeling in high-dose-gradient SBRT because its value depends on the underlying cell survival model and the model parameters. Further investigations of the optimal formalism to derive the EUD through clinical correlations are warranted.
-
High-dose 6‑MV radiotherapy may cause cardiac implantable electronic devices (CIEDs) to malfunction. To assess CIED malfunctions resulting from direct exposure up to 10 Gy, 100 pacemakers (PMs) and 40 implantable cardioverter-defibrillators (ICDs) were evaluated. ⋯ Apart from transient electromagnetic interference, last-generation CIEDs withstood direct 6‑MV exposure up to 10 Gy. Permanent battery or software errors occurred immediately or later only in less recent CIEDs.
-
Evaluation of long-term outcome and toxicity of moderately hypofractionated radiotherapy using intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost treatment planning and cone beam CT-based image guidance for localized prostate cancer. ⋯ Moderately hypofractionated radiotherapy using SIB treatment planning and cone beam CT image guidance resulted in high biochemical control and survival with low rates of late toxicity.
-
COVID-19 infection has manifested as a major threat to both patients and healthcare providers around the world. Radiation oncology institutions (ROI) deliver a major component of cancer treatment, with protocols that might span over several weeks, with the result of increasing susceptibility to COVID-19 infection and presenting with a more severe clinical course when compared with the general population. The aim of this manuscript is to investigate the impact of ROI protocols and performance on daily practice in the high-risk cancer patients during this pandemic. ⋯ Most ROIs reported a deep impact of SARS-CoV‑2 infections on their work routine. Modification and prioritization of treatment regimens and the application of protective measures preserved a well-functioning radiation oncology service and patient care.
-
The described work aimed to avoid cancellations of indispensable treatments by implementing active patient flow management practices and optimizing infrastructure utilization in the radiation oncology department of a large university hospital and regional COVID-19 treatment center close to the first German SARS-CoV‑2 hotspot region Heinsberg in order to prevent nosocomial infections in patients and personnel during the pandemic. ⋯ In times of reduced medical infrastructure capacities and resources, controlling infrastructural time per patient as well as optimizing facility utilization and personnel workload during treatment evaluation, planning, and irradiation can help to improve appointment compliance and quality management. Avoiding recurrent and preventable exposure to healthcare infrastructure has potential health benefits and might avert cross infections during the pandemic. Active patient flow management in high-risk COVID-19 regions can help Radiation Oncologists to continue and initiate treatments safely, instead of cancelling and deferring indicated therapies.