• Methods Mol. Biol. · Jan 2012

    Post-digestion ¹⁸O exchange/labeling for quantitative shotgun proteomics of membrane proteins.

    • Xiaoying Ye, Brian T Luke, Donald J Johann, King C Chan, Darue A Prieto, Akira Ono, Timothy D Veenstra, and Josip Blonder.
    • Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD, USA.
    • Methods Mol. Biol. 2012 Jan 1; 893: 223-40.

    AbstractThe role of membrane proteins is critical for regulation of physiologic and pathologic cellular processes. Hence it is not surpassing that membrane proteins make ∼70% of contemporary drug targets. Quantitative profiling of membrane proteins using mass spectrometry (MS)-based proteomics is critical in a quest for disease biomarkers and novel cancer drugs. Post-digestion (18)O exchange is a simple and efficient method for differential (18)O/(16)O stable isotope labeling of two biologically distinct specimens, allowing relative quantitation of proteins in complex mixtures when coupled with shotgun MS-based proteomics. Due to minimal sample consumption and unrestricted peptide tagging, (18)O/(16)O stable isotope labeling is particularly suitable for amount-limited protein specimens typically encountered in membrane and clinical proteomics. This chapter describes a protocol that relies on shotgun proteomics for quantitative profiling of the detergent-insoluble membrane proteins isolated from HeLa cells, differentially transfected with plasmids expressing HIV Gag protein and its myristylation-defective N-terminal mutant. Whilst this protocol depicts solubilization of detergent-insoluble membrane proteins coupled with post-digestion (18)O labeling, it is amenable to any complex membrane protein mixture. Described approach relies on solubilization and tryptic digestion of membrane proteins in a buffer containing 60% (v/v) methanol followed by differential (18)O/(16)O labeling of protein digests in 20% (v/v) methanol buffer. After mixing, the differentially labeled peptides are fractionated using off-line strong cation exchange (SCX) followed by on-line reversed phase nanoflow reversed-phase liquid chromatography (nanoRPLC)-MS identification/quantiation of peptides/proteins. The use of methanol-based buffers in the context of the post-digestion (18)O exchange/labeling eliminates the need for detergents or chaotropes that interfere with LC separations and peptide ionization. Sample losses are minimized because solubilization, digestion, and stable isotope labeling are carried out in a single tube, avoiding any sample transfer or buffer exchange between these steps.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.