• J. Neurophysiol. · Aug 2020

    Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects.

    • Kelsie J Grant, Anita M Mepani, Peizhe Wu, Kenneth E Hancock, Victor de Gruttola, M Charles Liberman, and Stéphane F Maison.
    • Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.
    • J. Neurophysiol. 2020 Aug 1; 124 (2): 418-431.

    AbstractHearing loss caused by noise exposure, ototoxic drugs, or aging results from the loss of sensory cells, as reflected in audiometric threshold elevation. Animal studies show that loss of hair cells can be preceded by loss of auditory-nerve peripheral synapses, which likely degrades auditory processing. While this condition, known as cochlear synaptopathy, can be diagnosed in mice by a reduction of suprathreshold cochlear neural responses, its diagnosis in humans remains challenging. To look for evidence of cochlear nerve damage in normal hearing subjects, we measured their word recognition performance in difficult listening environments and compared it to cochlear function as assessed by otoacoustic emissions and click-evoked electrocochleography. Several electrocochleographic markers were correlated with word scores, whereas distortion product otoacoustic emissions were not. Specifically, the summating potential (SP) was larger and the cochlear nerve action potential (AP) was smaller in those with the worst word scores. Adding a forward masker or increasing stimulus rate reduced SP in the worst performers, suggesting that this potential includes postsynaptic components as well as hair cell receptor potentials. Results suggests that some of the variance in word scores among listeners with normal audiometric threshold arises from cochlear neural damage.NEW & NOTEWORTHY Recent animal studies suggest that millions of people may be at risk of permanent impairment from cochlear synaptopathy, the age-related and noise-induced degeneration of neural connections in the inner ear that "hides" behind a normal audiogram. This study examines electrophysiological responses to clicks in a large cohort of subjects with normal hearing sensitivity. The resultant correlations with word recognition performance are consistent with an important contribution cochlear neural damage to deficits in hearing in noise abilities.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…