• NeuroImage · Jul 2008

    Functional changes of apparent diffusion coefficient during visual stimulation investigated by diffusion-weighted gradient-echo fMRI.

    • Tao Jin and Seong-Gi Kim.
    • Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA. taj6@pitt.edu <taj6@pitt.edu>
    • Neuroimage. 2008 Jul 1; 41 (3): 801-12.

    AbstractThe signal source of apparent diffusion coefficient (ADC) changes induced by neural activity is not fully understood. To examine this issue, ADC-fMRI in response to a visual stimulus was obtained in isoflurane-anesthetized cats at 9.4 T. A gradient-echo technique was used for minimizing the coupling between diffusion and background field gradients, which was experimentally confirmed. In the small b-value domain (b=5 and 200 s/mm2), a functional ADC increase was detected at the middle of the visual cortex and at the cortical surface, which was caused mainly by an increase in cerebral blood volume (CBV) and inflow. With higher b-values (b=200 and 1000-1200 s/mm2), a functional ADC decrease was observed in the parenchyma and also at the cortical surface. Within the parenchyma, the ADC decrease responded faster than the BOLD signal, but was not well localized to the middle of visual cortex and almost disappeared when the intravascular signal was removed with a susceptibility contrast agent, suggesting that the decrease in ADC without contrast agent was mostly of vascular origin. At the cortical surface, an average ADC decrease of 0.5% remained after injection of the contrast agent, which may have arisen from a functional reduction of the partial volume of cerebrospinal fluid. Overall, a functional ADC change of tissue origin could not be detected under our experimental conditions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…