• African health sciences · Mar 2021

    COVID-19 mortality rate prediction for India using statistical neural networks and gaussian process regression model.

    • S Dhamodharavadhani and R Rathipriya.
    • Department of Computer Science, Periyar University, Salem-India.
    • Afr Health Sci. 2021 Mar 1; 21 (1): 194206194-206.

    AbstractThe primary purpose of this research is to identify the best COVID-19 mortality model for India using regression models and is to estimate the future COVID-19 mortality rate for India. Specifically, Statistical Neural Networks (Radial Basis Function Neural Network (RBFNN), Generalized Regression Neural Network (GRNN)), and Gaussian Process Regression (GPR) are applied to develop the COVID-19 Mortality Rate Prediction (MRP) model for India. For that purpose, there are two types of dataset used in this study: One is COVID-19 Death cases, a Time Series Data and the other is COVID-19 Confirmed Case and Death Cases where Death case is dependent variable and the Confirmed case is an independent variable. Hyperparameter optimization or tuning is used in these regression models, which is the process of identifying a set of optimal hyperparameters for any learning process with minimal error. Here, sigma (σ) is a hyperparameter whose value is used to constrain the learning process of the above models with minimum Root Mean Squared Error (RMSE). The performance of the models is evaluated using the RMSE and 'R2 values, which shows that the GRP model performs better than the GRNN and RBFNN.© 2021 Dhamodharavadhani S et al.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.