-
- Francesco Campa, Catarina N Matias, Filipe J Teixeira, Joana F Reis, Maria J Valamatos, Giuseppe Coratella, and Cristina P Monteiro.
- Department for Life Quality Studies, University of Bologna, Rimini, Italy.
- Nutrition. 2022 Oct 1; 102: 111694.
ObjectivesThis study aimed to test whether athlete-specific, bioelectrical, impedance-based equations to estimate fat-free mass (FFM) could be more accurate than generalized equations when testing resistance-trained exercisers.MethodsA total of 50 resistance-trained men (age 30.9 ± 7.4 y; body mass index: 25.3 ± 2.2 kg/m2) and 20 men from the general population (age 29.9 ± 9.1 y; body mass index: 22.8 ± 2.4 kg/m2) underwent bioelectrical impedance and dual-energy x-ray absorptiometry (DXA) evaluations. FFM was derived by one bioelectrical impedance-based equation specific for athletes and three generalized equations, all developed with foot-to-hand bioimpedance technologies at a 50 kHz frequency. DXA was the reference method for the FFM assessment.ResultsCompared with DXA, when assessing the resistance-trained participants, the athletic-specific equation had neither mean (-0.89 kg; P = 0.789) or proportional bias (r = -0.104; P = 0.474) with a coefficient of determination equal to R2 = 0.91. In contrast, the three generalized predictive equations overestimated FFM (range, 4.11-5.37 kg; P < 0.05) with R2 ranging from 0.84 to 0.90. The athletic-specific equation underestimated FFM in the general population participants (-2.93 kg; P < 0.05).ConclusionsWhen assessing body composition in resistance-trained exercisers, specific equations for athletes should be preferred to generalized ones to avoid an overestimation in FFM. Furthermore, athlete-specific and generalized formulas cannot be used interchangeably, even when assessing body composition in the general population.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.