• Preventive medicine · Nov 2022

    Body-composition phenotypes and their associations with cardiometabolic risks and health behaviours in a representative general US sample.

    • Lisa Kakinami, Sabine Plummer, Tamara R Cohen, Sylvia Santosa, and Jessica Murphy.
    • Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada; PERFORM Centre, Concordia University, Montreal, Quebec, Canada. Electronic address: lisa.kakinami@concordia.ca.
    • Prev Med. 2022 Nov 1; 164: 107282107282.

    AbstractBody mass index is poor at distinguishing between adiposity and muscle. Based on dual energy X-ray absorptiometry data, a diagnostic framework to analyze body composition by categorizing fat- and muscle-mass body composition into four phenotypes has been proposed. The objective of this study was to assess the association between body-composition phenotypes with adiposity measures, health behaviours and cardiometabolic risks in a representative U.S. adult population. Data were from NHANES (1999-2006: n = 9867; 2011-2018: n = 10,454). Four phenotypes based on being above/below the 50th percentile of age- and sex- adjusted reference curves of fat-mass and muscle-mass were identified. Multiple linear and logistic regressions were used to assess phenotypes (high [H] or low [L] adiposity [A] or muscle mass [M]) against adiposity measures, health behaviours, cardiometabolic risk, and dietary intake. Low-adiposity/high-muscle (LA-HM) was the referent. Analyses incorporated the complex sampling design and survey weights, and were adjusted for age, sex, race, and education. Compared to the LA-HM reference group, the HA-LM phenotype was less physically active, had higher total and lower high-density lipoprotein cholesterol, and had lower intake of all examined nutrients (all p < 0.01). For the HA-HM phenotype, unfavourable values were detected for all adiposity and cardiometabolic measures compared to the LA-HM phenotype (all p < 0.01). The two high adiposity phenotypes were associated with poorer health behaviours and cardiovascular risk factors, regardless of muscle-mass, but associations differed across the phenotypes. Results further underscores the importance of accounting for both adiposity and muscle mass in measurement and analysis. Further longitudinal investigation is needed.Copyright © 2022 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…