-
Preventive medicine · Nov 2022
Cardiovascular mortality risk prediction using objectively measured physical activity phenotypes in NHANES 2003-2006.
- Mark K Ledbetter, Lucia Tabacu, Andrew Leroux, Ciprian M Crainiceanu, and Ekaterina Smirnova.
- Department of Mathematics, University of Lynchburg, VA, USA.
- Prev Med. 2022 Nov 1; 164: 107303107303.
AbstractIncreased physical activity (PA) has been associated with a decreased risk of cardiovascular disease (CVD) and mortality. However, most previous studies use self-reported PA instead of objectively measured PA assessed by wearable accelerometers. To the best of our knowledge, there have not been studies that quantified the univariate and multivariate ability of objectively measured PA summaries to predict the risk of CVD mortality. We investigate the ability of objectively measured PA summary variables to predict CVD mortality: as individual predictors, as part of the best multivariate model incorporating traditional predictors, and as additions to the best multivariate model using only traditional CVD predictors. Data were collected in the National Health and Nutrition Examination Survey 2003-2006 waves for US participants aged 50-85. The predictive ability was measured using Concordance, sometimes referred to as the C-statistic. Specifically, we calculated 10-fold cross-validated concordance (CVC) in survey-weighted Cox proportional hazard models. The best univariate predictor of CVD mortality was total activity count (outperformed age). In multivariate models, two of the eight predictors identified using the improvement in CVC threshold of 0.001 were PA measures (CVC = 0.844). The best model without physical activity (7 predictors) had CVC of 0.830. The addition of PA measures to the best traditional model was significantly better at predicting CVD mortality (P < 0.001). Accelerometer-derived PA measures have excellent cardiovascular mortality prediction performance. Wearable accelerometers have a potential for assessment of individuals' CVD mortality risks.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.