-
- Md Nafiul Alam Khan and Rossita Mohamad Yunus.
- Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia. Electronic address: nafiul.nipun95@gmail.com.
- Nutrition. 2023 Apr 1; 108: 111947111947.
BackgroundThe proper intake of nutrients is essential to the growth and maturation of youngsters. In sub-Saharan Africa, 1 in 7 children dies before age 5 y, and more than a third of these deaths are attributed to malnutrition. The main purpose of this study was to develop a majority voting-based hybrid ensemble (MVBHE) learning model to accelerate the prediction accuracy of malnutrition data of under-five children in sub-Saharan Africa.MethodsThis study used available under-five nutritional secondary data from the Demographic and Health Surveys performed in sub-Saharan African countries. The research used bagging, boosting, and voting algorithms, such as random forest, decision tree, eXtreme Gradient Boosting, and k-nearest neighbors machine learning methods, to generate the MVBHE model.ResultsWe evaluated the model performances in contrast to each other using different measures, including accuracy, precision, recall, and the F1 score. The results of the experiment showed that the MVBHE model (96%) was better at predicting malnutrition than the random forest (81%), decision tree (60%), eXtreme Gradient Boosting (79%), and k-nearest neighbors (74%).ConclusionsThe random forest algorithm demonstrated the highest prediction accuracy (81%) compared with the decision tree, eXtreme Gradient Boosting, and k-nearest neighbors algorithms. The accuracy was then enhanced to 96% using the MVBHE model. The MVBHE model is recommended by the present study as the best way to predict malnutrition in under-five children.Copyright © 2022 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.