• Neuroscience · Jul 2023

    Plasticity of cortico-striatal neurons of the caudal anterior cingulate cortex during experimental neuropathic pain.

    • TrujilloMaría JesúsMJUniversidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica B, Constanza Ilarraz, and Fernando Kasanetz.
    • Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina.
    • Neuroscience. 2023 Jul 15; 523: 9110491-104.

    AbstractMaladaptive neuronal plasticity is a main mechanism for the development and maintenance of pathological pain. Affective, motivational and cognitive deficits that are comorbid with pain involve cellular and synaptic modifications in the anterior cingulate cortex (ACC), a major brain mediator of pain perception. Here we use a model of neuropathic pain (NP) in male mice and ex-vivo electrophysiology to investigate whether layer 5 caudal ACC (cACC) neurons projecting to the dorsomedial striatum (DMS), a critical region for motivational regulation of behavior, are involved in aberrant neuronal plasticity. We found that while the intrinsic excitability of cortico-striatal cACC neurons (cACC-CS) was preserved in NP animals, excitatory postsynaptic potentials (EPSP) induced after stimulation of distal inputs were enlarged. The highest synaptic responses were evident both after single stimuli and in each of the EPSP that compose responses to trains of stimuli, and were accompanied by increased synaptically-driven action potentials. EPSP temporal summation was intact in ACC-CS neurons from NP mice, suggesting that the plastic changes were not due to alterations in dendritic integration but rather through synaptic mechanisms. These results demonstrate for the first time that NP affects cACC neurons that project to the DMS and reinforce the notion that maladaptive plasticity of the cortico-striatal pathway may be a key factor in sustaining pathological pain.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…