-
Preventive medicine · Aug 2023
Sensor-based cloud computing data system and long distance running fatigue assessment.
- Jing Li and ZhiBiao Liu.
- Sports Health Technology College, Jilin Sports University, Changchun, Jilin 130022, China.
- Prev Med. 2023 Aug 1; 173: 107604107604.
AbstractWireless sensor networks are widely used in sports training, medical and health care, smart home, environmental monitoring, cloud data and other fields because of their large scale, self-organization, reliability, dynamic, integration and data centralization. Based on this point, this article conducts a comprehensive analysis and research on cloud computing data systems, and designs and implements a dynamic replication strategy. Since different users have different demands for different data at different times, it is necessary to record and analyze recent users' data access, so as to actively adjust the number and location of data blocks. Subsequently, a multi-source blockchain transmission method was proposed and implemented, which can significantly reduce the time cost of data migration and improve the overall performance of cloud storage data systems. Finally, the article provides an in-depth analysis of long-distance running fatigue. This study will design a simulated specialized exercise load experiment to reproduce the load characteristics of excellent athletes during mid to long distance running, in order to induce exercise fatigue in the main muscles of different parts of their bodies. At the same time, the amplitude frequency joint analysis of the surface changes of EMG signal in this process is carried out. This article conducts research on sensor based cloud computing data systems and long-distance running fatigue assessment, promoting the development of cloud computing data systems and improving long-distance running fatigue assessment methods.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.