-
- Xingbin Shi, Baojiang Li, Wenlong Wang, Yuxin Qin, Haiyan Wang, and Xichao Wang.
- The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China; Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China.
- Neuroscience. 2023 Sep 1; 527: 647364-73.
AbstractMotor imagery (MI) is a brain-computer interface (BCI) technique in which specific brain regions are activated when people imagine their limbs (or muscles) moving, even without actual movement. The technology converts electroencephalogram (EEG) signals generated by the brain into computer-readable commands by measuring neural activity. Classification of motor imagery is one of the tasks in BCI. Researchers have done a lot of work on motor imagery classification, and the existing literature has relatively mature decoding methods for two-class motor tasks. However, as the categories of EEG-based motor imagery tasks increase, further exploration is needed for decoding research on four-class motor imagery tasks. In this study, we designed a hybrid neural network that combines spatiotemporal convolution and attention mechanisms. Specifically, the data is first processed by spatiotemporal convolution to extract features and then processed by a Multi-branch Convolution block. Finally, the processed data is input into the encoder layer of the Transformer for a self-attention calculation to obtain the classification results. Our approach was tested on the well-known MI datasets BCI Competition IV 2a and 2b, and the results show that the 2a dataset has a global average classification accuracy of 83.3% and a kappa value of 0.78. Experimental results show that the proposed method outperforms most of the existing methods.Copyright © 2023 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.