• Nutrition · Nov 2023

    Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer.

    • Jun Young Lim, Young Min Kim, Hye Sun Lee, and Jeonghyun Kang.
    • Yonsei University College of Medicine, Seoul, Republic of Korea.
    • Nutrition. 2023 Nov 1; 115: 112146112146.

    ObjectivesSkeletal muscle gauge (SMG) was recently introduced as an imaging indicator of sarcopenia. Computed tomography is essential for measuring SMG; thus, the use of SMG is limited to patients who undergo computed tomography. We aimed to develop a machine learning algorithm using clinical and inflammatory markers to predict SMG in patients with colorectal cancer.MethodsThe least absolute shrinkage and selection operator regression model was applied for variable selection and predictive signature building in the training set. The predictive accuracy of the least absolute shrinkage and selection operator model, defined as linear predictor (LP)-SMG, was compared using the area under the receiver operating characteristic curve and decision curve analysis in the test set.ResultsA total of 1094 patients with colorectal cancer were enrolled and randomly categorized into training (n = 656) and test (n = 438) sets. Low SMG was identified in 142 (21.6%) and 90 (20.5%) patients in the training and test sets, respectively. According to multivariable analysis of the test sets, LP-SMG was identified as an independent predictor of low SMG (odds ratio = 1329.431; 95% CI, 271.684-7667.996; P < .001). Its predictive performance was similar in the training and test sets (area under the receiver operating characteristic curve = 0.846 versus 0.869; P = .427). In the test set, LP-SMG had better outcomes in predicting SMG than single clinical variables, such as sex, height, weight, and hemoglobin.ConclusionsLP-SMG had superior performance than single variables in predicting low SMG. This machine learning model can be used as a screening tool to detect sarcopenic status without using computed tomography during the treatment period.Copyright © 2023 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…