• Neuroscience · Oct 2023

    Ring finger protein 146-mediated long-chain fatty-acid-coenzyme A ligase 4 ubiquitination regulates ferroptosis-induced neuronal damage in ischemic stroke.

    • Zheng-Long Jin, Wen-Ying Gao, Fu Guo, Shao-Jun Liao, Ming-Zhe Hu, Tao Yu, Shang-Zhen Yu, and Qing Shi.
    • Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen 529000, Guangdong Province, PR China.
    • Neuroscience. 2023 Oct 1; 529: 148161148-161.

    AbstractIschemic stroke (IS) is one of the leading causes of disability and death worldwide. Long-chain fatty-acid-coenzyme A ligase 4 (ACSL4) is a critical isozyme for ferroptosis that participates in the progression of IS. RING finger protein 146 (RNF146) is an E3 ligase predicted to interact with ACSL4 and regulated by activating transcription factor 3 (ATF3). The molecular mechanism of the RNF146/ACSL4 axis in IS is still unclear. Oxygen-glucose deprivation/reperfusion (OGD/R) treatment was used as the in vitro model, and middle cerebral artery occlusion (MCAO) mice were established for the in vivo model for IS. The protein level of ACSL4 was monitored by Western blot during ischemic injury. RNF146 was overexpressed in vitro and in vivo. The interaction of RNF146 and ACSL4 was determined by co-immunoprecipitation (Co-IP) assay. Chromatin immunoprecipitation (ChIP) assay and luciferase assay were utilized to determine the regulation of ATF3 on RNF146. Ferroptosis was evaluated by the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), Fe2+, and protein levels of related genes including ACSL4, SLC7A11, and GPX4. ACSL4 was downregulated upon OGD treatment and then increased by re-oxygenation. RNF146 was responsible for the ubiquitination and degradation of ACSL4 protein. RNF146 overexpression could prevent the stimulation of OGD/R-induced LDH, MDA, and Fe2+ levels and ferroptosis-related gene expression. ATF3 could activate the transcription and expression of RNF146, leading to the inhibition of OGD/R-induced neuron ferroptosis. The ATF3-mediated RNF146 could alleviate neuronal damage in IS by regulating ACSL4 ubiquitination and ferroptosis, providing a novel theoretical basis for exploring therapeutic targets and strategies.Copyright © 2023. Published by Elsevier Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…