-
Multicenter Study
Body composition radiomic features as a predictor of survival in patients with non-small cellular lung carcinoma: A multicenter retrospective study.
- Miłosz Rozynek, Zbisław Tabor, Stanisław Kłęk, and Wadim Wojciechowski.
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland.
- Nutrition. 2024 Apr 1; 120: 112336112336.
ObjectivesThis study combined two novel approaches in oncology patient outcome predictions-body composition and radiomic features analysis. The aim of this study was to validate whether automatically extracted muscle and adipose tissue radiomic features could be used as a predictor of survival in patients with non-small cell lung cancer.MethodsThe study included 178 patients with non-small cell lung cancer receiving concurrent platinum-based chemoradiotherapy. Abdominal imaging was conducted as a part of whole-body positron emission tomography/computed tomography performed before therapy. Methods used included automated assessment of the volume of interest using densely connected convolutional network classification model - DenseNet121, automated muscle and adipose tissue segmentation using U-net architecture implemented in nnUnet framework, and radiomic features extraction. Acquired body composition radiomic features and clinical data were used for overall and 1-y survival prediction using machine learning classification algorithms.ResultsThe volume of interest detection model achieved the following metric scores: 0.98 accuracy, 0.89 precision, 0.96 recall, and 0.92 F1 score. Automated segmentation achieved a median dice coefficient >0.99 in all segmented regions. We extracted 330 body composition radiomic features for every patient. For overall survival prediction using clinical and radiomic data, the best-performing feature selection and prediction method achieved areas under the curve-receiver operating characteristic (AUC-ROC) of 0.73 (P < 0.05); for 1-y survival prediction AUC-ROC was 0.74 (P < 0.05).ConclusionAutomatically extracted muscle and adipose tissue radiomic features could be used as a predictor of survival in patients with non-small cell lung cancer.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.