• Neuroscience · Nov 2024

    Functional connectivity differences of the olfactory network in Parkinson's Disease, mild cognitive impairment and cognitively normal individuals: A resting-state fMRI study.

    • F Cieri, P P Giriprakash, R Nandy, X Zhuang, R L Doty, J Z K Caldwell, and D Cordes.
    • Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA. Electronic address: cierif3@ccf.org.
    • Neuroscience. 2024 Nov 1; 559: 8168-16.

    AbstractOlfactory dysfunction is an early sign of such neurodegenerative diseases as Parkinson's (PD) and Alzheimer's (AD), and is often present in Mild Cognitive Impairment (MCI), a precursor of AD. Understanding neuro-temporal relationships, i.e., functional connectivity, between olfactory eloquent structures in such disorders, could shed light on their basic pathophysiology. To this end, we employed region-based analyses using resting-state functional magnetic resonance imaging (rs-fMRI) obtained from cognitively normal (CN), MCI, and PD patients with cognitive impairment (PD-CogImp). Using machine learning (linear and ensemble learning), we determined whether the identified functional patterns could classify abnormal function from normal function. Olfaction, as measured by objective testing, was found to be most strongly associated with diagnostic status, emphasizing the fundamental association of this primary sensory system with these conditions. Consistently lower functional connectivity was observed in the PD-CogImp cohort compared to the CN cohort among all identified brain regions. Differences were also found between PD-CogImp and MCI at the level of the orbitofrontal and cingulate cortices. MCI and CN subjects had different functional connectivity between the posterior orbitofrontal cortex and thalamus. Regardless of study group, males showed significantly higher connectivity than females in connections involving the orbitofrontal cortex. The logistic regression model trained using the top discriminatory features revealed that caudate was the most involved olfaction-related brain structure (accuracy = 0.88, Area under the Receiver operator characteristic curve of 0.90). In aggregate, our study demonstrates that resting functional connectivity among olfactory eloquent structures has potential value in better understanding the pathophysiology of several neurodegenerative diseases.Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.