• Neuroscience · Nov 2024

    Maintained volitional activation of the muscle alters the cortical processing of proprioceptive afference from the ankle joint.

    • Alessandra Giangrande, Toni Mujunen, Giacinto Luigi Cerone, Alberto Botter, and Harri Piitulainen.
    • Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy. Electronic address: alessandra.x.giangrande@jyu.fi.
    • Neuroscience. 2024 Nov 12; 560: 314325314-325.

    AbstractCortical proprioceptive processing of intermittent, passive movements can be assessed by extracting evoked and induced electroencephalographic (EEG) responses to somatosensory stimuli. Although the existent prior research on somatosensory stimulations, it remains unknown to what extent ongoing volitional muscle activation modulates the proprioceptive cortical processing of passive ankle-joint rotations. Twenty-five healthy volunteers (28.8 ± 7 yr, 14 males) underwent a total of 100 right ankle-joint passive rotations (4° dorsiflexions, 4 ± 0.25 s inter-stimulus interval, 30°/s peak angular velocity) evoked by a movement actuator during passive condition with relaxed ankle and active condition with a constant plantarflexion torque of 5 ± 2.5 Nm. Simultaneously, EEG, electromyographic (EMG) and kinematic signals were collected. Spatiotemporal features of evoked and induced EEG responses to the stimuli were extracted to estimate the modulation of the cortical proprioceptive processing between the active and passive conditions. Proprioceptive stimuli during the active condition elicited robustly ∼26 % larger evoked response and ∼38 % larger beta suppression amplitudes, but ∼42 % weaker beta rebound amplitude over the primary sensorimotor cortex than the passive condition, with no differences in terms of response latencies. These findings indicate that the active volitional motor task during naturalistic proprioceptive stimulation of the ankle joint enhances related cortical activation and reduces related cortical inhibition with respect to the passive condition. Possible factors explaining these results include mechanisms occurring at several levels of the proprioceptive processing from the peripheral muscle (i.e. mechanical, muscle spindle status, etc.) to the different central (i.e. spinal, sub-cortical and cortical) levels.Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.