• Neuroscience · Nov 2024

    Review

    Regulation of nerve cells and therapeutic potential in central nervous system injury using microglia-derived exosomes.

    • Dongxiao Lu, Haohan Sun, Hao Fan, Nianlu Li, Yuming Li, Xianyong Yin, Yang Fan, Hao Sun, Shan Wang, and Tao Xin.
    • College of Clinical Medicine, Jining Medical University, Jining 272067, China; Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Shandong Engineering Research Center of Precision Diagnosis and Treatment Technology for Neuro-oncology, Jinan 250014, China; Laboratory of Basic and Translational Neuromedicine, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China; Shandong Institute of Brain Science and Brain-inspired Research, Jinan 250117, China.
    • Neuroscience. 2024 Nov 8; 563: 849284-92.

    AbstractThe intercellular communication within the central nervous system (CNS) is of great importance for in maintaining brain function, homeostasis, and CNS regulation. When the equilibrium of CNS is disrupted or injured, microglia are immediately activated and respond to CNS injury. Microglia-derived exosomes are capable of participating in intercellular communication within the CNS by transporting various bioactive substances, including nucleic acids, proteins, lipids, amino acids, and metabolites. Nevertheless, microglia activation is a double-edged sword. Activated microglia can coordinate the neural repair process and, conversely, can amplify tissue injury and impede CNS repair. This work reviewed the roles of exosomes derived from microglia stimulated by different environments (mainly lipopolysaccharide, interleukin-4, and other specific preconditioning) in CNS injury and their possible therapeutic potentials. This work focuses on the regulation of exosomes derived from microglia stimulated by different environments on nerve cells. Meanwhile, we summarized the molecular mechanisms by which the relevant exosomes exert regulatory effects. Exosomes, derived from microglia stimulated by different environments, regulate other nerve cells during the repair of CNS injury, having beneficial or detrimental effects on CNS repair. A comprehensive understanding of the molecular mechanisms underlying their role can provide a robust foundation for the clinical treatment of CNS injury.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…