• NeuroImage · Apr 2010

    Comparative Study

    Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data.

    • X Shen, X Papademetris, and R T Constable.
    • Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. xilin.shen@yale.edu
    • Neuroimage. 2010 Apr 15;50(3):1027-35.

    AbstractResting-state fMRI provides a method to examine the functional network of the brain under spontaneous fluctuations. A number of studies have proposed using resting-state BOLD data to parcellate the brain into functional subunits. In this work, we present two state-of-the-art graph-based partitioning approaches, and investigate their application to the problem of brain network segmentation using resting-state fMRI. The two approaches, the normalized cut (Ncut) and the modularity detection algorithm, are also compared to the Gaussian mixture model (GMM) approach. We show that the Ncut approach performs consistently better than the modularity detection approach, and it also outperforms the GMM approach for in vivo fMRI data. Resting-state fMRI data were acquired from 43 healthy subjects, and the Ncut algorithm was used to parcellate several different cortical regions of interest. The group-wise delineation of the functional subunits based on resting-state fMRI was highly consistent with the parcellation results from two task-based fMRI studies (one with 18 subjects and the other with 20 subjects). The findings suggest that whole-brain parcellation of the cortex using resting-state fMRI is feasible, and that the Ncut algorithm provides the appropriate technique for this task.Copyright 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.