• Neuroscience · Apr 2016

    Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells.

    • C Huang, P Yuan, J Wu, and J Huang.
    • College of Life Science, Wuhan University, Wuhan 430072, PR China.
    • Neuroscience. 2016 Apr 5; 319: 9-22.

    AbstractExcitatory amino acid carrier 1 (EAAC1) is one important subtype of the excitatory amino acid transporters (EAATs), and its absence can increase the vulnerability to oxidative stress in neural tissue. Enhanced expression of EAAC1 can provide neuroprotection in multiple disorders, including ischemia and multiple sclerosis. However, the mechanism regulating EAAC1 expression is not fully understood. Using rat C6 astroglial cells, which specifically express EAAC1, we found that 17β-estradiol (E2) and (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), an agonist of the G-protein-coupled estrogen receptor (GPR30), strongly increased EAAC1 protein levels and protected cells from hydrogen peroxide (H2O2) toxicity. We further found that E2/G1 activated sphingosine kinase 1 (SphK1) via GPR30, resulting in the transcription of fibroblast growth factor 2 (FGF2), which stimulated its receptor (FGFR) and led to the phosphorylation of FGFR substrate 2α (FRS2α). This triggered downstream ERK1/2 signaling for the expression of EAAC1. Both the knockdown of FGF2 by siRNA and the pharmacological suppression of the FGFR-ERK cascade abolished the E2/G1 effect on EAAC1 expression. Overall, our work characterizes a signaling pathway by which E2 transactivates FGFR-ERK to induce EAAC1 expression in an FGF2-dependent manner. This occurs through SphK1 activation via GPR30 and leads to a resistance to H2O2 toxicity. This signal transduction pathway may provide novel insights into our understanding of the neuroprotective effects of E2 and may reveal new therapeutic targets or drugs for regulating the oxidative toxicity effects of various neurological diseases.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.