• J. Neurophysiol. · Jan 2007

    Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes.

    • Hong-Mei Zhang, Shao-Rui Chen, and Hui-Lin Pan.
    • Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe Blvd., Unit 409, Houston, TX 77030, USA.
    • J. Neurophysiol. 2007 Jan 1;97(1):102-9.

    AbstractActivation of spinal muscarinic acetylcholine receptors (mAChRs) produces analgesia and inhibits dorsal horn neurons through potentiation of GABAergic/glycinergic tone and inhibition of glutamatergic input. To investigate the mAChR subtypes involved in the inhibitory effect of mAChR agonists on glutamate release, evoked excitatory postsynaptic currents (eEPSCs) were recorded in lamina II neurons using whole cell recordings in rat spinal cord slices. The nonselective mAChR agonist oxotremorine-M concentration-dependently inhibited the monosynaptic and polysynaptic EPSCs elicited by dorsal root stimulation. Interestingly, oxotromorine-M caused a greater inhibition of polysynaptic EPSCs (64.7%) than that of monosynaptic EPSCs (27.9%). In rats pretreated with intrathecal pertussis toxin, oxotremorine-M failed to decrease monosynaptic EPSCs but still partially inhibited the polysynaptic EPSCs in some neurons. This remaining effect was blocked by a relatively selective M(3) antagonist 4-DAMP. Himbacine, an M(2)/M(4) antagonist, or AFDX-116, a selective M(2) antagonist, completely blocked the inhibitory effect of oxotremorine-M on monosynaptic EPSCs. However, the specific M(4) antagonist MT-3 did not alter the effect of oxotremorine-M on monosynaptic EPSCs. Himbacine also partially attenuated the effect of oxotremorine-M on polysynaptic EPSCs in some cells and this effect was abolished by 4-DAMP. Furthermore, oxotremorine-M significantly decreased spontaneous EPSCs in seven of 22 (31.8%) neurons, an effect that was blocked by 4-DAMP. This study provides new information that the M(2) mAChRs play a critical role in the control of glutamatergic input from primary afferents to dorsal horn neurons. The M(3) and M(2)/M(4) subtypes on a subpopulation of interneurons are important for regulation of glutamate release from interneurons in the spinal dorsal horn.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…