• J. Neurophysiol. · Mar 2002

    Spinal inhibitory effects of cardiopulmonary afferent inputs in monkeys: neuronal processing in high cervical segments.

    • Margaret J Chandler, Jianhua Zhang, Chao Qin, and Robert D Foreman.
    • Department of Physiology, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73190, USA.
    • J. Neurophysiol. 2002 Mar 1;87(3):1290-302.

    AbstractNoxious stimulation of spinal afferents inhibits primate spinothalamic tract (STT) neurons in segments distant from the region of afferent entry. Inhibitory effects of cardiopulmonary sympathetic afferent (CPSA) stimulation remain after C(1) transection but disappear with spinal transection between C(3) and C(7). We hypothesized that spinal inhibitory effects produced by CPSA stimulation are processed by neurons in C(1)-C(3) segments. One purpose of this study in anesthetized monkeys was to determine whether chemical activation of high cervical neurons reduced sacral STT cell responses to colorectal distension (CRD) and urinary bladder distension (UBD). First, effects and interactions of pelvic and cardiopulmonary visceral afferent inputs were determined in 10 monkeys on extracellular activity of sacral STT neurons recorded in deep dorsal horn. CRD and UBD increased activity in 95 and 91% of sacral STT neurons, respectively. CPSA and cardiopulmonary vagal stimulation decreased activity in 84 and 56% of STT neurons, respectively. CPSA stimulation decreased CRD-evoked activity in six of eight sacral STT neurons and decreased UBD-evoked activity in five of eight STT neurons tested. Excitatory amino acid application at C2 segment decreased CRD-evoked responses in 7 of 10 sacral STT neurons and decreased UBD-evoked responses in 9 of 12 STT neurons. The second purpose of this study was to examine responses of C(1)-C(3) descending propriospinal neurons to stimulation of cardiopulmonary afferent fibers. If C(1)-C(3) neurons process CPSA input to suppress STT transmission, then CPSA stimulation should excite C(1)-C(3) neurons with descending projections. Effects of thoracic vagus nerve stimulation also were examined. Vagal stimulation inhibits STT neurons in segments below C(3) but excites C(1)-C(3) STT neurons; we theorized that vagal inhibition of sensory transmission might relay in high cervical segments and, therefore, excite C(1)-C(3) descending propriospinal neurons. Extracellular discharge rate was recorded for C(1)-C(3) neurons antidromically activated from thoracic or lumbar spinal cord in 24 monkeys. CPSA stimulation increased activity of 16 of 45 neurons and inhibited one cell. Thoracic vagus stimulation increased activity of 20 of 43 neurons and inhibited one cell; stimulation of abdominal vagus fibers did not affect activity of six of six cells that were excited by thoracic vagal input. Mechanical stimulation of somatic fields excited 30 of 41 neurons tested. All neurons activated by visceral input received convergent somatic input from noxious pinch of somatic receptive fields that generally included the neck and upper body; 11 C(1)-C(3) propriospinal neurons did not respond to any afferent input examined. Results of these studies were consistent with the idea that modulation of spinal nociceptive transmission might involve neuronal connections in high cervical segments.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…