• NeuroImage · Aug 2003

    Increased glial metabolites predict increased working memory network activation in HIV brain injury.

    • T Ernst, L Chang, and S Arnold.
    • Medical Department, Brookhaven National Laboratory, Building 490, P.O. Box 5000, Upton, NY 11973-5000, USA. TErnst@bnl.gov
    • Neuroimage. 2003 Aug 1;19(4):1686-93.

    AbstractDeficits in attention and working memory are common in human immuno deficiency virus type 1 (HIV-1)-infected patients, but the pathophysiology of these deficits is poorly understood. Modern neuroimaging techniques, such as proton magnetic resonance spectroscopy ((1)H MRS) and functional MRI (fMRI), can assess some of the processes underlying HIV brain injury. To evaluate the model that attentional deficits in early HIV brain disease are related to brain inflammation, (1)H MRS and fMRI were performed in 14 HIV-positive subjects [acquired immunodeficiency syndrome (AIDS) dementia complex stage 1 or less]. Increasing attentional load on three working memory tasks was assessed with fMRI, and the concentrations of brain metabolites were measured with (1)H MRS in the frontal gray and white matter, and basal ganglia. Metabolite concentrations were correlated with fMRI blood oxygenation level-dependent (BOLD) signals, using a random-effects linear regression model in SPM99. Several positive correlations were observed between the BOLD signal strength in the working memory network (posterior parietal cortex and lateral prefrontal cortex) and the concentrations of frontal white matter and basal ganglia metabolites that are predominant in glial cells (choline-containing compounds, myo-inositol, and total creatine). In contrast, BOLD signals in the working memory network were not correlated with the concentration of N-acetyl compounds, which are markers of neuronal viability, or with metabolite concentrations in the frontal gray matter. These findings are consistent with previous results that mild HIV brain injury is associated with increased glial activation without major involvement of neuronal abnormalities. We propose that the inflammatory glial abnormalities reduce the efficiency of neural processing, and necessitate compensatory increases in attention in patients, and associated BOLD signals, to perform a given task. The same mechanism may also contribute to cognitive dysfunction in other brain diseases that involve inflammation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.