NeuroImage
-
Increased glial metabolites predict increased working memory network activation in HIV brain injury.
Deficits in attention and working memory are common in human immuno deficiency virus type 1 (HIV-1)-infected patients, but the pathophysiology of these deficits is poorly understood. Modern neuroimaging techniques, such as proton magnetic resonance spectroscopy ((1)H MRS) and functional MRI (fMRI), can assess some of the processes underlying HIV brain injury. To evaluate the model that attentional deficits in early HIV brain disease are related to brain inflammation, (1)H MRS and fMRI were performed in 14 HIV-positive subjects [acquired immunodeficiency syndrome (AIDS) dementia complex stage 1 or less]. ⋯ These findings are consistent with previous results that mild HIV brain injury is associated with increased glial activation without major involvement of neuronal abnormalities. We propose that the inflammatory glial abnormalities reduce the efficiency of neural processing, and necessitate compensatory increases in attention in patients, and associated BOLD signals, to perform a given task. The same mechanism may also contribute to cognitive dysfunction in other brain diseases that involve inflammation.
-
The relative contributions of autonomic arousal and of cognitive processing to cortical activity during anticipation of pain, and the role of changes in thalamic outflow, are still largely unknown. To address these issues, we investigated with functional magnetic resonance imaging (fMRI) the activity of the contralateral mesial hemispheric wall in 56 healthy volunteers while they expected the stimulation of one foot, which could be either painful or innocuous. The waiting period was characterized by emotional arousal, a moderate rise in heart rate, and by increases in mean fMRI signals in the medial thalamus, mid- and posterior cingulate cortex, and in the putative foot area of the primary somatosensory and motor cortex. ⋯ Negatively correlated clusters predominated in the perigenual anterior cingulate and ventromedial prefrontal cortex. HR clusters had different characteristics from, and showed limited spatial overlap with, clusters whose fMRI signals were related to the psychophysical pain intensity profile; however, both cluster populations were affected by anticipation. These findings unravel a complex pattern of brain activity during uncertain anticipation of noxious input, likely related both to changes in the level of arousal and to cognitive modulation of the pain system.