• Neuroscience · Jan 2004

    Limbic epileptogenicity, cell loss and axonal reorganization induced by audiogenic and amygdala kindling in wistar audiogenic rats (WAR strain).

    • O Y Galvis-Alonso, J A Cortes De Oliveira, and N Garcia-Cairasco.
    • Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
    • Neuroscience. 2004 Jan 1;125(3):787-802.

    AbstractAudiogenic seizures are a model of generalized tonic-clonic brainstem-generated seizures. Repeated induction of audiogenic seizures, in audiogenic kindling (AuK) protocols, generates limbic epileptogenic activity. The present work evaluated associations between permanence of AuK-induced limbic epileptogenicity and changes in cell number/gluzinergic terminal reorganization in limbic structures in Wistar audiogenic rats (WARs). Additionally, we evaluated histological changes after only amygdala kindling (AmK) and only AuK, and longevity of permanence of AuK-induced limbic epileptogenicity, up to 160 days. WARs and Wistar non-susceptible rats were submitted to AuK (80 stimuli) followed by both 50 days without acoustic stimulation and AmK (16 stimuli), only AmK and only AuK. Cell counting and gluzinergic terminal reorganization were assessed, respectively, by using Nissl and neo-Timm histochemistries, 24 h after the last AmK stimulus. Evaluation of behavioral response to a single acoustic stimulus after AuK and up to 160 days without acoustic stimulation was done in another group. AuK-induced limbic epileptogenicity developed in parallel with a decrease in brainstem-type seizure severity during AuK. AmK was facilitated after AuK. Permanence of AuK-induced limbic epileptogenicity was associated with cell loss only in the rostral lateral nucleus of amygdala. Roughly 20 generalized limbic seizures induced by AuK were neither associated with hippocampal cell loss nor mossy fiber sprouting (MFS). AmK developed with cell loss in hippocampal and amygdala nuclei but not MFS. Main changes of gluzinergic terminals after kindling protocols were observed in amygdala, perirhinal and piriform cortices. AuK and AuK-AmK induced a similar number and type of seizures, higher than in AmK. AmK and AuK-AmK were associated with broader cell loss than AuK. Data indicate that permanent AuK-induced limbic epileptogenicity is mainly associated to gluzinergic terminal reorganization in amygdala but not in the hippocampus and with no hippocampal cell loss. Few AmK-induced seizures are associated to broader and higher cell loss than a higher number of AuK-induced seizures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…