-
- F Bao and D Liu.
- Department of Neurology, 301 University Boulevard, University of Texas Medical Branch, Galveston, TX 77555-0653, USA.
- Neuroscience. 2004 Jan 1;126(2):285-95.
AbstractWe previously measured the time courses of hydrogen peroxide (H2O2), hydroxyl radical (*OH), and catalytic iron increases following traumatic spinal cord injury (SCI). This study determines whether the SCI-elevated level of *OH causes cell death. OH was generated by administering H2O2 and Fe2+ at the concentrations attained following SCI, each through a separate microdialysis fiber inserted laterally into the gray matter of the cord. The duration of *OH generation mimics the duration of its elevation after SCI. The death of neurons and astrocytes was characterized at 24 h post-*OH exposure and quantitated by counting surviving cells along the fiber track in sections stained with Cresyl Violet, or immunohistochemically stained with anti-neuron-specific enolase (anti-NSE) and anti-glial fibrillary acidic protein (anti-GFAP). DNA fragmentation in neurons was characterized by double staining with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) and anti-NSE. Using a one way ANOVA followed by the Tukey test, we demonstrated that *OH generated in the cord induced significant losses of neurons in both Cresyl Violet (P<0.001) and anti-NSE-stained sections (P<0.001), and of astrocytes in GFAP-stained sections (P=0.001). *OH generated in the cord increased numbers of TUNEL-positive neurons compared with Ringer's solution administered as a control (P=0.001). Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic and a broad spectrum reactive species scavenger, significantly reduced *OH-induced death of neurons (P<0.001 in anti-NSE stained sections and P=0.002 in the Cresyl Violet-stained sections) and astrocytes (P=0.03). It also reduced the numbers of TUNEL-positive neurons (P=0.01). Electron microscopy confirmed that generated *OH induced neuronal and glial death with characteristic features of both necrosis and apoptosis. We conclude that 1) SCI-elevated *OH is sufficient to induce both necrosis and apoptosis, criteria for identifying an endogenous secondary damaging agent; 2) MnTBAP reduces *OH-induced cell death, perhaps by removing H2O2 administered in the tissue, thereby blocking formation of *OH, and also by scavenging downstream reactive species.Copyright 2004 IBRO
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.