• J Biomed Inform · Oct 2014

    Predicting patient acuity from electronic patient records.

    • Elina Kontio, Antti Airola, Tapio Pahikkala, Heljä Lundgren-Laine, Kristiina Junttila, Heikki Korvenranta, Tapio Salakoski, and Sanna Salanterä.
    • University of Turku, Department of Nursing Science, Finland; Turku University of Applied Sciences, Finland. Electronic address: elina.kontio@turkuamk.fi.
    • J Biomed Inform. 2014 Oct 1;51:35-40.

    BackgroundThe ability to predict acuity (patients' care needs), would provide a powerful tool for health care managers to allocate resources. Such estimations and predictions for the care process can be produced from the vast amounts of healthcare data using information technology and computational intelligence techniques. Tactical decision-making and resource allocation may also be supported with different mathematical optimization models.MethodsThis study was conducted with a data set comprising electronic nursing narratives and the associated Oulu Patient Classification (OPCq) acuity. A mathematical model for the automated assignment of patient acuity scores was utilized and evaluated with the pre-processed data from 23,528 electronic patient records. The methods to predict patient's acuity were based on linguistic pre-processing, vector-space text modeling, and regularized least-squares regression.ResultsThe experimental results show that it is possible to obtain accurate predictions about patient acuity scores for the coming day based on the assigned scores and nursing notes from the previous day. Making same-day predictions leads to even better results, as access to the nursing notes for the same day boosts the predictive performance. Furthermore, textual nursing notes allow for more accurate predictions than previous acuity scores. The best results are achieved by combining both of these information sources. The developed model achieves a concordance index of 0.821 when predicting the patient acuity scores for the following day, given the scores and text recorded on the previous day.ConclusionsBy applying language technology to electronic patient documents it is possible to accurately predict the value of the acuity scores of the coming day based on the previous daýs assigned scores and nursing notes.Copyright © 2014 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.