• J. Neurophysiol. · Apr 2009

    Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn.

    • Hui Nie and Han-Rong Weng.
    • Dept. of Anesthesiology and Pain Medicine, Div. of Anesthesiology and Critical Care, The University of Texas M. D. Anderson Cancer Center, 1400 Holcombe Blvd., Unit 409, Houston, TX 77030-4009, USA.
    • J. Neurophysiol. 2009 Apr 1;101(4):2041-51.

    AbstractActivation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn neurons is a key process related to sensory transmission, neural plasticity, and pathogenesis of pain. In this study, we investigated how activation of NMDA receptors in spinal substantia gelatinosa neurons is regulated by glutamate re-uptake through glutamate transporters located in the astrocytic and neuronal plasma membranes. Using visualized whole cell patch recording techniques, NMDA excitatory postsynaptic currents evoked by graded peripheral inputs in spinal substantia gelatinosa neurons of spinal slices from young adult rats were analyzed before and after combined inhibition of glial and neuronal glutamate transporters by d-threo-beta-benzyloxyaspartate (TBOA). Blockade of glutamate transporters increased the number and duration of NMDA receptors activated by weak and by strong primary afferent inputs as well as by exogenous glutamate. The enhancement in activation of NMDA receptors induced by TBOA was greater in neurons that have weaker synaptic input at baseline. Impaired glutamate uptake increased the open probability of NMDA channels and caused glutamate spillover outside the active synapses, leading to activation of extrasynaptic NMDA receptors and/or receptors located in neighboring synapses. Finally, blockade of glutamate transporters resulted in an increased proportion of NR2B subunit activation induced by peripheral input, and this increase was further augmented by stronger afferent input. These data indicate that glutamate transporters regulate spatiotemporal and intensity coding for sensory input and prevent excessive activation of glutamate receptors in the spinal dorsal horn. It is suggested that remedying dysfunctional glutamate transporters may be a potential new avenue to prevent the pathogenesis of pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.