Journal of neurophysiology
-
Electric stimulation of the retina reliably elicits light percepts in patients blinded by outer retinal diseases. However, individual percepts are highly variable and do not readily assemble into more complex visual images. As a result, the quality of visual information conveyed to patients has been quite limited. ⋯ Analogously, the length and location of sodium channel bands also varied by cell type. Consistent with the differences in band properties, we found that the absolute (lowest) thresholds were also different for different cell types. Taken together, our results suggest that the sodium-channel band is the site that is most responsive to electric stimulation and that differences in the bands underlie the threshold differences we observed.
-
The output of superficial dorsal horn (SDH; laminae I-II) neurons is critical for processing nociceptive, thermal, and tactile information. Like other neurons, the combined effects of synaptic inputs and intrinsic membrane properties determine their output. It is well established that peripheral synaptic inputs to SDH neurons undergo extensive reorganization during pre- and postnatal development. ⋯ I(Ar) expression levels, based on peak current amplitude, increased during development. Steady-state inactivation and activation for I(Ar) were slightly less potent in E15-E17 versus P21-P25 neurons at potentials near RMP (-55 mV). Together, our data indicate that intrinsic properties and I(Ar) expression change dramatically in SDH neurons during development, with the greatest alterations occurring on either side of a critical period, P6-P10.
-
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn neurons is a key process related to sensory transmission, neural plasticity, and pathogenesis of pain. In this study, we investigated how activation of NMDA receptors in spinal substantia gelatinosa neurons is regulated by glutamate re-uptake through glutamate transporters located in the astrocytic and neuronal plasma membranes. Using visualized whole cell patch recording techniques, NMDA excitatory postsynaptic currents evoked by graded peripheral inputs in spinal substantia gelatinosa neurons of spinal slices from young adult rats were analyzed before and after combined inhibition of glial and neuronal glutamate transporters by d-threo-beta-benzyloxyaspartate (TBOA). ⋯ Finally, blockade of glutamate transporters resulted in an increased proportion of NR2B subunit activation induced by peripheral input, and this increase was further augmented by stronger afferent input. These data indicate that glutamate transporters regulate spatiotemporal and intensity coding for sensory input and prevent excessive activation of glutamate receptors in the spinal dorsal horn. It is suggested that remedying dysfunctional glutamate transporters may be a potential new avenue to prevent the pathogenesis of pain.
-
Short-term retention of sensory information in the form of persistent activity of central neurons plays a key role in transforming a brief sensory stimulation into longer-lasting brain responses. The olfactory system uses this transformation for various functional purposes, but the underlying neuronal mechanisms remain elusive. Here, we recorded odor-evoked, single-unit spike responses of mitral and tufted (M/T) cells in the mouse olfactory bulb (OB) under urethane anesthesia and examined the neuronal mechanisms of the persistent discharge (PD) of M/T cells that outlasts the odor stimulus for tens of seconds. ⋯ Metabotropic glutamate receptor 1 (mGluR1) is expressed in the dendrites of M/T cells and is thought to participate in intraglomerular interactions among M/T cells. In OBs lacking mGluR1, or treated locally with an mGluR1-selective antagonist, the duration of the odor-induced spike responses was significantly lower than that in control OBs, indicating that mGluR1 within the bulbar neuronal circuits participates in the PD generation. These results suggest that neuronal circuits in the OB can actively prolong the odor-induced spike activity of bulbar output neurons and thus transform a brief odor input into longer-lasting activity in the central olfactory system.
-
Changes in the temporal envelope are important defining features of natural acoustic signals. Many cells in the inferior colliculus (IC) respond preferentially to certain modulation frequencies, but how they accomplish this is not yet clear. We therefore made whole cell patch-clamp recordings in the IC of anesthetized mice while presenting sinusoidal amplitude-modulated (SAM) tones. ⋯ In contrast, band-reject rMTF neurons responded with small excitatory or inhibitory postsynaptic potentials to brief tones. In these cells, a power law could describe the supralinear relation between average membrane potential and spike rate. Differences in timing of synaptic input and presence or absence of spike adaptation therefore define band-pass and band-reject rate tuning to SAM tones in the mouse IC.