-
- Hideyuki Matsumoto, Hideki Kashiwadani, Hiroshi Nagao, Atsu Aiba, and Kensaku Mori.
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Japan.
- J. Neurophysiol. 2009 Apr 1; 101 (4): 1890-900.
AbstractShort-term retention of sensory information in the form of persistent activity of central neurons plays a key role in transforming a brief sensory stimulation into longer-lasting brain responses. The olfactory system uses this transformation for various functional purposes, but the underlying neuronal mechanisms remain elusive. Here, we recorded odor-evoked, single-unit spike responses of mitral and tufted (M/T) cells in the mouse olfactory bulb (OB) under urethane anesthesia and examined the neuronal mechanisms of the persistent discharge (PD) of M/T cells that outlasts the odor stimulus for tens of seconds. The properties of the persistent afterdischarge that occurred after odor stimulation were distinct from those of odor-induced immediate spike responses in terms of the magnitude, odorant specificity, and odorant concentration-response relationship. This suggests that neuronal mechanisms other than prolonged input from olfactory sensory neurons are involved in generating these afterdischarges. Metabotropic glutamate receptor 1 (mGluR1) is expressed in the dendrites of M/T cells and is thought to participate in intraglomerular interactions among M/T cells. In OBs lacking mGluR1, or treated locally with an mGluR1-selective antagonist, the duration of the odor-induced spike responses was significantly lower than that in control OBs, indicating that mGluR1 within the bulbar neuronal circuits participates in the PD generation. These results suggest that neuronal circuits in the OB can actively prolong the odor-induced spike activity of bulbar output neurons and thus transform a brief odor input into longer-lasting activity in the central olfactory system.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.