• Spine · Jun 2008

    Comparative Study

    Biomechanical testing of a novel four-rod technique for lumbo-pelvic reconstruction.

    • Brian P Kelly, Francis H Shen, John S Schwab, Vincent Arlet, and Denis J Diangelo.
    • Department of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, Memphis, TN 38163, USA. bkelly@utmem.edu
    • Spine. 2008 Jun 1;33(13):E400-6.

    Study DesignA biomechanical testing protocol was used to study different lumbo-pelvic fixation techniques in a human cadaveric lumbar spine model.ObjectiveTo compare the in vitro biomechanics of a novel four-rod lumbo-pelvic reconstruction technique with and with out cross-links, to that of a conventional cross-linked two-rod technique.Summary Of Background DataNumerous lumbo-pelvic reconstruction methods based on the Galveston two-rod technique have been proposed for cases involving total sacrectomy. Recently a technique that proposes novel use of 4 supporting longitudinal rods across the lumbo-pelvic junction has been reported. No comparative in vitro biomechanical testing has been previously done to evaluate these different reconstruction methods.MethodsFive spines were evaluated in flexion, extension, left-right lateral bending and left-right axial rotation in a human total sacrectomy model. The model was comprised of cadaveric lumbar spines (L1-L5) with custom fabricated polyethylene blocks used to simulate pelvic fixation. Three conditions were evaluated: Linked Four-Rod, Linked Two-Rod, and Four-Rod (no cross-links). Flexibility and motion data were compared using a one-way repeated measures analysis of variance and SNK tests.ResultsThe Linked Four-Rod and Four-Rod conditions significantly decreased flexibility and reduced L5-Pelvic motion over the Linked Two-Rod construct in flexion and extension. The Linked Four-Rod condition significantly decreased flexibility in left-right axial rotation compared with the Four-Rod and Linked Two-Rod conditions. No significant differences occurred in relative lateral movement between left and right pelvic polyethylene blocks.ConclusionThe four-rod technique improved fixation stability over the conventional linked two-rod technique in flexion and extension, and when cross-linked, in left-right axial rotation. The four-rod technique also significantly reduced L5-Pelvic junction movement in flexionand extension, which may have implications for bony fusion. The use of cross-links is recommended.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.