• J. Neurophysiol. · Apr 2009

    Intracellular responses of neurons in the mouse inferior colliculus to sinusoidal amplitude-modulated tones.

    • H-R Geis and J G G Borst.
    • Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
    • J. Neurophysiol. 2009 Apr 1; 101 (4): 2002-16.

    AbstractChanges in the temporal envelope are important defining features of natural acoustic signals. Many cells in the inferior colliculus (IC) respond preferentially to certain modulation frequencies, but how they accomplish this is not yet clear. We therefore made whole cell patch-clamp recordings in the IC of anesthetized mice while presenting sinusoidal amplitude-modulated (SAM) tones. The relation between the number of evoked spikes and modulation frequency was used to construct rate modulation transfer functions (rMTFs). We observed different types of rate tuning, including band-pass (16%), band-reject (13%), high-pass (6%), and low-pass (6%) tuning. In the high-pass rMTF neurons and some of the low-pass rMTF neurons, the tuning characteristics appeared to be already present in the inputs. In both band-pass and band-reject rMTF neurons, the nonlinear relation between membrane potential and spike probability ensured preferential spiking during only a small part of the modulation period. Band-pass rMTF neurons had rapidly rising excitatory postsynaptic potentials, allowing good phase-locking to brief tones and intermediate modulation frequencies. At low modulation frequencies, adaptation of their spike threshold contributed to the onset response. In contrast, band-reject rMTF neurons responded with small excitatory or inhibitory postsynaptic potentials to brief tones. In these cells, a power law could describe the supralinear relation between average membrane potential and spike rate. Differences in timing of synaptic input and presence or absence of spike adaptation therefore define band-pass and band-reject rate tuning to SAM tones in the mouse IC.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.