• J. Neurophysiol. · Mar 2002

    Selective suppression of late laryngeal adductor responses by N-methyl-D-aspartate receptor blockade in the cat.

    • Ranjinidevi Ambalavanar, Laura Purcell, Marcia Miranda, Frank Evans, and Christy L Ludlow.
    • Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC 1416, Bethesda, MD 20892-1416, USA.
    • J. Neurophysiol. 2002 Mar 1; 87 (3): 1252-62.

    AbstractLaryngeal adductor responses to afferent stimulation play a key role in airway protection. Although vital for protection during cough and swallow, these responses also must be centrally controlled to prevent airway obstruction by laryngospasm during prolonged stimulation. Our purpose was to determine the role of N-methyl-D-aspartate (NMDA) receptors in modulating early R1 responses (at 9 ms) and/or later more prolonged R2 responses (at 36 ms) during electrical stimulation of the laryngeal afferent fibers contained in the internal branch of the superior laryngeal nerve in the cat. The percent occurrence, amplitude, and conditioning of muscle responses to single superior laryngeal nerve (SLN) stimuli presented in pairs at interstimulus intervals of 250 ms were measured in three experiments: 1) animals that had ketamine as anesthetic premedication were compared with those who did not, when both were maintained under alpha-chloralose anesthesia. 2) The effects of administering ketamine in one group of animals were compared with increasing the depth of alpha-chloralose anesthesia without NMDA receptor blockade in another group of animals. 3) The effects of dextromethorphan (without anesthetic effects) were examined in another group of animals. In the first experiment, the occurrence of R2 responses were reduced from 95% in animals without ketamine premedication to 25% in animals with ketamine premedication (P = 0.015). No differences occurred in the occurrence, amplitude, latency, or conditioning effects on R1 responses between these groups. In the second experiment, the occurrence of R2 responses was reduced from 96 to 79% after an increase in the depth of anesthesia with alpha-chloralose in contrast with reductions in R2 occurrence from 98 to 19% following the administration of ketamine to induce NMDA receptor blockade along with increased anesthesia (P = 0.025). In the third experiment, R2 occurrence was reduced from 89 to 27% (P = 0.017) with administration of dextromethorphan while R1 response occurrence and amplitude did not change. In each of these experiments, NMDA receptor blockade did not have significant effects on cardiac or respiratory rates in any of the animals. The results demonstrate that NMDA receptors play an essential role in long latency R2 laryngeal responses to laryngeal afferent stimulation. On the other hand, early R1 laryngeal adductor responses are likely to involve non-NMDA receptor activation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.