• J Biomech Eng · May 2014

    A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw.

    • Deniz U Erbulut, Ali Kiapour, Tunc Oktenoglu, Ali F Ozer, and Vijay K Goel.
    • J Biomech Eng. 2014 May 1; 136 (5): 051007.

    AbstractCurrently, rigid fixation systems are the gold standard for degenerative disk disease treatment. Dynamic fixation systems have been proposed as alternatives for the treatment of a variety of spinal disorders. These systems address the main drawbacks of traditional rigid fixation systems, such as adjacent segment degeneration and instrumentation failure. Pedicle-screw-based dynamic stabilization (PDS) is one type of these alternative systems. The aim of this study was to simulate the biomechanical effect of a novel posterior dynamic stabilization system, which is comprised of dynamic (hinged) screws interconnected with a coiled, spring-based dynamic rod (DSDR), and compare it to semirigid (DSRR and RSRR) and rigid stabilization (RSRR) systems. A validated finite element (FE) model of L1-S1 was used to quantify the biomechanical parameters of the spine, such as range of motion, intradiskal pressure, stresses and facet loads after single-level instrumentation with different posterior stabilization systems. The results obtained from in vitro experimental intact and instrumented spines were used to validate the FE model, and the validated model was then used to compare the biomechanical effects of different fixation and stabilization constructs with intact under a hybrid loading protocol. The segmental motion at L4-L5 increased by 9.5% and 16.3% in flexion and left rotation, respectively, in DSDR with respect to the intact spine, whereas it was reduced by 6.4% and 10.9% in extension and left-bending loads, respectively. After instrumentation-induced intradiskal pressure at adjacent segments, L3-L4 and L5-S1 became less than the intact in dynamic rod constructs (DSDR and RSDR) except in the RSDR model in extension where the motion was higher than intact by 9.7% at L3-L4 and 11.3% at L5-S1. The facet loads were insignificant, not exceeding 12N in any of the instrumented cases in flexion. In extension, the facet load in DSDR case was similar to that in intact spine. The dynamic rod constructions (DSDR and RSDR) led to a lesser peak stress at screws compared with rigid rod constructions (DSRR and RSRR) in all loading cases. A dynamic construct consisting of a dynamic rod and a dynamic screw did protect the adjacent level from excessive motion.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…