• Neuroscience · Oct 2016

    The pathogenic mechanism of dysbindin-1B toxic aggregation: BLOC-1 and intercellular vesicle trafficking.

    • Wei Yang, Chunyan Zhu, Yan Shen, and Qi Xu.
    • National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
    • Neuroscience. 2016 Oct 1; 333: 78-91.

    AbstractDTNBP1, which encodes dysbindin-1, is associated with cognitive impairment. Genetic evidence indicates that the C allele of rs117610176 leads to an increase in DTNBP-1b mRNA splicing in patients with paranoid schizophrenia. In addition, dysbindin-1B, rather than dysbindin-1A/C, exhibits a tendency toward toxic aggregation. In postmortem brains, dysbindin-1B not only aggregates with itself, it also co-aggregates with proteins that interact with it. However, the pathogenic mechanism underlying dysbindin-1B toxic aggregation remains unknown. In the brain, dysbindin-1 is primarily found as a subunit of biogenesis of lysosome-related organelles complex 1 (BLOC-1), which plays a role in intracellular vesicle trafficking. Therefore, we hypothesized that dysbindin-1B might impair the cognitive function of schizophrenia patients by co-aggregating with BLOC-1 subunits and disturbing the function of BLOC-1. In this study, we investigated the dominant-negative effect of dysbindin-1B on the BLOC-1 complex. We found that in multiple brain areas in Dys1B(+/+) mice, the expression levels of soluble functional BLOC-1 subunits were decreased. Meanwhile, BLOC-1 subunits co-aggregated with dysbindin-1B-myc. Functional studies in primary cortical neurons further revealed the malfunction of BLOC-1 in intercellular vesicle trafficking in Dys1B(+/+) mice. In addition, we used the Morris water maze task to investigate the effects of dysbindin-1B aggregation on cognition. The results demonstrated that Dys1B(+/+) mice exhibited spatial learning and memory deficits, which were accompanied by the shrinkage of apical and basal dendritic branches and the loss of dendritic spines in hippocampal CA1 neurons, as demonstrated by Golgi staining. Taken together, the results of the present study suggest that dysbindin-1B toxic aggregation might impair cognition through a dominant-negative effect on BLOC-1.Copyright © 2016. Published by Elsevier Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.