-
- Lin Zhang, Xiaozhi Liu, Huaxin Sheng, Shuai Liu, Ying Li, Julia Q Zhao, David S Warner, Wulf Paschen, and Wei Yang.
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China.
- Neuroscience. 2017 Feb 20; 343: 190-212.
AbstractSmall ubiquitin-like modifier (SUMO) conjugation (SUMOylation) plays key roles in neurologic function in health and disease. Neuronal SUMOylation is essential for emotionality and cognition, and this pathway is dramatically activated in post-ischemic neurons, a neuroprotective response to ischemia. It is also known from cell culture studies that SUMOylation modulates gene expression. However, it remains unknown how SUMOylation regulates neuronal gene expression in vivo, in the physiologic state and after ischemia, and modulates post-ischemic recovery of neurologic function. To address these important questions, we used a SUMO1-3 knockdown (SUMO-KD) mouse in which a Thy-1 promoter drives expression of 3 distinct microRNAs against SUMO1-3 to silence SUMO expression specifically in neurons. Wild-type and SUMO-KD mice were subjected to transient forebrain ischemia. Microarray analysis was performed in hippocampal CA1 samples, and neurologic function was evaluated. SUMOylation had opposite effects on neuronal gene expression before and after ischemia. In the physiological state, most genes regulated by SUMOylation were up-regulated in SUMO-KD compared to wild-type mice. Brain ischemia/reperfusion significantly modulated the expression levels of more than 400 genes in wild-type mice, with a majority of those genes upregulated. The extent of this post-ischemic transcriptome change was suppressed in SUMO-KD mice. Moreover, SUMO-KD mice exhibited significantly worse functional outcome. This suggests that suppression of global gene expression response in post-ischemic brain due to SUMO knockdown has a negative effect on post-ischemic neurologic function. Together, our data provide a basis for future studies to mechanistically link SUMOylation to neurologic function in health and disease.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.