• Neuroscience · Jan 2017

    Structural organization of the dendritic reticulum linked by gap junctions in layer 4 of the visual cortex.

    • Takaichi Fukuda.
    • Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Higashi-ku, Kumamoto 860-8556, Japan. Electronic address: tfukuda@kumamoto-u.ac.jp.
    • Neuroscience. 2017 Jan 6; 340: 76-90.

    AbstractNeuronal gap junctions are ubiquitous in the brain, but their precise positions in actual neuronal circuits have been uncertain, and their functional roles remain unclear. In this study, I visualized connexin36-immunoreactive gap junctions and examined the structural features of the interconnected dendrites arising from parvalbumin (PV)-positive interneurons in layer 4 of the feline visual cortex. I observed evidence for net-like dense linkages of dendrites among virtually all PV neurons (56/58 cells, 96.6%) in the tissue. This dendritic reticulum established connections among clustered cells and further among remote cells. The latter connectivity exhibited a preference for vertical direction, including translaminar linkages, but was also characterized by lateral continuity. Measurement of the distances from each dendritic gap junction back to the two connected somata revealed that at least one of two somata was within 50μm from the junction in 77.5% of the cases and within 75μm in 91.2% of the cases. Thus, distal gap junctions mediated morphologically asymmetrical connection where one soma was close to, but the other soma was far from the connecting junction. This connectivity was typically observed between neurons located apart in the same columnar space, where a long vertical dendrite bridged two neurons through an asymmetrically positioned gap junction. In contrast, gap junctions formed between nearby cells were close to both somata. Thalamocortical afferents established synapses densely on somata of layer 4 PV neurons, indicating the possible involvement of proximal gap junctions in visual stimulus-driven feedforward regulation. These findings provide a new structural basis for cortical investigations.Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.