• Neuroscience · Feb 2017

    ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    • Graciela L Mazzone, Priyadharishini Veeraraghavan, Carlota Gonzalez-Inchauspe, Andrea Nistri, and Osvaldo D Uchitel.
    • Laboratorios de Investigación aplicada en Neurociencias (LIAN) - Fundación para la Lucha conntra las Enfermedades Neurológicas de la Infancia (FLENI), CONICET, Buenos Aires, Argentina. Electronic address: mazzone@fbmc.fcen.uba.ar.
    • Neuroscience. 2017 Feb 20; 343: 398-410.

    AbstractIn the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection.Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.