• Neuroscience · Sep 2017

    Deep Hypothermia Therapy Attenuates LPS Induced Microglia Neuroinflammation via the STAT3 Pathway.

    • G Tong, A Krauss, J Mochner, S Wollersheim, P Soltani, F Berger, and K R L Schmitt.
    • Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address: giang.tong@charite.de.
    • Neuroscience. 2017 Sep 1; 358: 201-210.

    AbstractDeep hypothermia therapy (HT) is a standard method for neuroprotection during complex pediatric cardiac surgery involving extracorporeal circulation and deep hypothermic cardiac arrest. The procedure, however, can provoke systemic inflammatory response syndrome (SIRS), one of the most severe side effects associated with pediatric cardiac surgery. To date, the cellular inflammatory mechanisms induced by deep HT remain to be elucidated. Therefore, we investigated the effects of deep HT (17°C) and rewarming on the inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 murine microglia. Additionally, we also investigated the application of Stattic, a signal transducer and activator of transcription 3 (STAT3) activation inhibitor, as an alternative to physical cooling to attenuate the LPS-induced inflammatory response. Deep HT had no cytotoxic effect but attenuated microglia migration. IκBα degradation was delayed by deep HT resulting in the attenuation of pNF-κB p65 migration into the nucleus and significant decreases in pro-inflammatory IL-6, TNF-α, and MCP-1 expressions and secretions, as well as decreased anti-inflammatory IL-10 and SOCS3 expressions. Additionally, pStat3 was significantly down regulated under deep hypothermic conditions, also corresponding with the significant reduction in IL-6 and TNF-α expressions. Similar to the effects of HT, the application of Stattic under normothermic conditions resulted in significantly reduced IL-6 and TNF-α expressions. Moreover, attenuation of the inflammatory response resulted in decreased apoptosis in a direct co-culture of microglia and neurons. HT reduces the inflammatory response in LPS-stimulated BV-2 microglial cells, alluding to a possible mechanism of therapeutic hypothermia-induced neuroprotection. In the future, attenuating the phospho-STAT3 pathway may lead to the development of a neuroprotectant with greater clinical efficacy.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.