• Neuroscience · Dec 2017

    Neurobiological Correlates of Pain Avoidance-Like Behavior in Morphine-Dependent and Non-Dependent Rats.

    • Amanda R Pahng and Rod I Paulsen.
    • Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.
    • Neuroscience. 2017 Dec 16; 366: 1-14.

    AbstractRepeated use of opioids can lead to the development of analgesic tolerance and dependence. Additionally, chronic opioid exposure can cause a paradoxical emergence of heightened pain sensitivity to noxious stimuli, termed hyperalgesia, which may drive continued or escalated use of opioids to manage worsening pain symptoms. Opioid-induced hyperalgesia has traditionally been measured in rodents via reflex-based assays, including the von Frey method. To better model the cognitive/motivational dimension of pain in a state of opioid dependence and withdrawal, we employed a recently developed non-reflex-based method for measuring pain avoidance-like behavior in animals (mechanical conflict avoidance test). Adult male Wistar rats were administered an escalating dose regimen of morphine (opioid-dependent group) or repeated saline (control group). Morphine-dependent rats exhibited significantly greater avoidance of noxious stimuli during withdrawal. We next investigated individual relationships between pain avoidance-like behavior and alterations in protein phosphorylation in central motivation-related brain areas. We discovered that pain avoidance-like behavior was significantly correlated with alterations in phosphorylation status of protein kinases (ERK, CaMKII), transcription factors (CREB), presynaptic markers of neurotransmitter release (Synapsin), and the rate-limiting enzyme for dopamine synthesis (TH) across specific brain regions. Our findings suggest that alterations in phosphorylation events in specific brain centers may support cognitive/motivational responses to avoid pain.Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…