• Neuroscience · Sep 2018

    Pyridazine-derivatives Enhance Structural and Functional Plasticity of Tripartite Synapse Via Activation of Local Translation in Astrocytic Processes.

    • Joshua B Foster, Fangli Zhao, Xueqin Wang, Zan Xu, Kuanhung Lin, Candice C Askwith, Kevin J Hodgetts, and Lin Chien-Liang Glenn CG Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States. Electronic address: lin.492@osu.edu..
    • Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States.
    • Neuroscience. 2018 Sep 15; 388: 224-238.

    AbstractExcitatory amino acid transporter 2 (EAAT2) is primarily located in perisynaptic astrocytic processes (PAP) where it plays a critical role in synaptic glutamate homeostasis. Dysregulation of EAAT2 at the translational level has been implicated in a myriad of neurological diseases. We previously discovered that pyridazine analogs can activate EAAT2 translation. Here, we sought to further refine the site and mechanism of compound action. We found that in vivo, compound treatment increased EAAT2 expression only in the PAP of astrocytes where EAAT2 mRNA also was identified. Direct application of compound to isolated PAP induced de novo EAAT2 protein synthesis, indicating that compound activates translation locally in the PAP. Using a screening process, we identified a set of PAP proteins that are rapidly up-regulated following compound treatment and a subset of these PAP proteins may be locally synthesized in the PAP. Importantly, these identified proteins are associated with the structural and functional capacity of the PAP, indicating compound enhanced plasticity of the PAP. Concomitantly, we found that pyridazine analogs increase synaptic protein expression in the synapse and enhance hippocampal long-term potentiation. This was not dependent upon compound-mediated local translation in neurons. This suggests that compound enhances the structural and functional capacity of the PAP which in turn facilitates enhanced plasticity of the tripartite synapse. Overall, this provides insight into the mechanism action site of pyridazine derivatives as well as the growing appreciation of the dynamic regulation and functional aspects of the PAP at the tripartite synapse.Copyright © 2018. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.