• Neuroscience · Sep 2018

    Subregion-Specific Impacts of Genetic Loss of Diazepam Binding Inhibitor on Synaptic Inhibition in the Murine Hippocampus.

    • Connor D Courtney and Catherine A Christian.
    • Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
    • Neuroscience. 2018 Sep 15; 388: 128-138.

    AbstractBenzodiazepines are commonly prescribed to treat neurological conditions including epilepsy, insomnia, and anxiety. The discovery of benzodiazepine-specific binding sites on γ-aminobutyric acid type-A receptors (GABAARs) led to the hypothesis that the brain may produce endogenous benzodiazepine-binding site ligands. An endogenous peptide, diazepam binding inhibitor (DBI), which can bind these sites, is thought to be capable of both enhancing and attenuating GABAergic transmission in different brain regions. However, the role that DBI plays in modulating GABAARs in the hippocampus remains unclear. Here, we investigated the role of DBI in modulating synaptic inhibition in the hippocampus using a constitutive DBI knockout mouse. Miniature and evoked inhibitory postsynaptic currents (mIPSCs, eIPSCs) were recorded from CA1 pyramidal cells and dentate gyrus (DG) granule cells. Loss of DBI signaling increased mIPSC frequency and amplitude in CA1 pyramidal cells from DBI knockout mice compared to wild-types. In DG granule cells, conversely, the loss of DBI decreased mIPSC amplitude and increased mIPSC decay time, indicating bidirectional modulation of GABAAR-mediated transmission in specific subregions of the hippocampus. eIPSC paired-pulse ratios were consistent across genotypes, suggesting that alterations in mIPSC frequency were not due to changes in presynaptic release probability. Furthermore, cells from DBI knockout mice did not display altered responsiveness to pharmacological applications of diazepam, a benzodiazepine, nor flumazenil, a benzodiazepine-binding site antagonist. These results provide evidence that genetic loss of DBI alters synaptic inhibition in the adult hippocampus, and that the direction of DBI-mediated modulation can vary discretely between specific subregions of the same brain structure.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.