-
- N H Nisansa D de Silva.
- Department of Computer and Information Science, University of Oregon, 224 Deschutes Hall, 1477 E 13th Ave., Eugene, OR, 97403, USA. nisansa@cs.uoregon.edu.
- Methods Mol. Biol. 2017 Jan 1; 1617: 69-81.
AbstractIn various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be taken as to what type of database would be used to handle this data. More often than not, the default and classical solution to this in the biomedical domain according to past research is relational databases. While this used to be the norm for a long while, it is evident that there is a trend to move away from relational databases in favor of other types and paradigms of databases. However, it still has paramount importance to understand the interrelation that exists between biomedical big data and relational databases. This chapter will review the pros and cons of using relational databases to store biomedical big data that previous researches have discussed and used.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.