• Neuroscience · Sep 2018

    Chemogenetic Manipulation of Dorsal Hippocampal Astrocytes Protects Against the Development of Stress-enhanced Fear Learning.

    • Meghan E Jones, Jacqueline E Paniccia, Christina L Lebonville, Kathryn J Reissner, and Donald T Lysle.
    • Department of Psychology and Neuroscience, Behavioral and Integrative Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
    • Neuroscience. 2018 Sep 15; 388: 455645-56.

    AbstractMaladaptive behavioral outcomes following stress have been associated with immune dysregulation. For example, we have previously reported that stress-induced dorsal hippocampal interleukin-1β signaling is critical to the development of stress-enhanced fear learning (SEFL). In parallel, astroglial signaling has been linked to the development of post-traumatic stress disorder (PTSD)-like phenotypes and our most recent studies have revealed astrocytes as the predominant cellular source of stress-induced IL-1β. Here, we used chemogenetic technology and morphological analyses to further explore dorsal hippocampal astrocyte function in the context of SEFL. Using a glial-expressing DREADD construct (AAV8-GFAP-hM4Di(Gi)-mCherry), we show that dorsal hippocampal astroglial Gi activation is sufficient to attenuate SEFL. Furthermore, our data provide the first initial evidence to support the function of the glial-DREADD construct employed. Specifically, we find that CNO (clozapine-n-oxide) significantly attenuated colocalization of the Gi-coupled DREADD receptor and cyclic adenosine monophosphate (cAMP), indicating functional inhibition of cAMP production. Subsequent experiments examined dorsal hippocampal astrocyte volume, surface area, and synaptic contacts (colocalization with postsynaptic density 95 (PSD95)) following exposure to severe stress (capable of inducing SEFL). While severe stress did not alter dorsal hippocampal astrocyte volume or surface area, the severe stressor exposure reduced dorsal hippocampal PSD95 immunoreactivity and the colocalization analysis showed reduced PSD95 colocalized with astrocytes. Collectively, these data provide evidence to support the functional efficacy of the glial-expressing DREADD employed, and suggest that an astrocyte-specific manipulation, activation of astroglial Gi signaling, is sufficient to protect against the development of SEFL, a PTSD-like behavior.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…