-
- Ryo Inagaki, Shigeki Moriguchi, and Kohji Fukunaga.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan. Electronic address: ryo.inagaki.r5@dc.tohoku.ac.jp.
- Neuroscience. 2018 Sep 15; 388: 448-459.
AbstractAnxiety disorder is a major psychiatric disorder characterized by fear, worry, and excessive rumination. However, the molecular mechanisms underlying neural plasticity and anxiety remain unclear. Here, we utilized a mouse model of anxiety-like behaviors induced by the chronic administration of corticosterone (CORT) to determine the exact mechanism of each region of the fear circuits in the anxiety disorders. Chronic CORT-treated mice showed a significant increase in anxiety-related behaviors as assessed by the elevated plus maze, light-dark, open-field, and marble-burying tasks. In addition, chronic CORT-treated mice exhibited abnormal amygdala-dependent tone-induced fear memory but normal hippocampus-dependent contextual memory. Consistent with amygdala hyperactivation, chronic CORT-treated mice showed significantly increased numbers of c-Fos-positive cells in the basolateral amygdala (BLA) after tone stimulation. Long-term potentiation (LTP) was markedly enhanced in the BLA of chronic CORT-treated mice compared to that of vehicle-treated mice. Immunoblot analyses revealed that autophosphorylation of Ca2+/calmodulin-dependent protein kinase (CaMK) IIα at threonine 286 and phosphorylation of cyclic-adenosine-monophosphate response-element-binding protein (CREB) at serine 133 were markedly increased in the BLA of chronic CORT-treated mice after tone stimulation. The protein and mRNA levels of brain-derived neurotrophic factor (BDNF) also significantly increased. Our findings suggest that increased CaMKII activity and synaptic plasticity in the BLA likely account for the aberrant amygdala-dependent fear memory in chronic CORT-treated mice.Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.